The effect of blood glucose, blood lactate and creatine kinase levels after carbohydrate-protein supplement uptake on recovery period after exercise in pencak silat athletes

Preeyapat Boonhan


Pencak Silat, a traditional martial art from Southeast Asia, has gained recent popularity, prompting interest in performance enhancement methods. Therefore, The purpose of this study is to examine the effects of carbohydrate-protein supplementation on blood glucose, blood lactate, and creatine kinase levels at the period of recovery after exercise in Pencak Silat Athletes. Materials and Methods: Thirty elite athletes (average age 18-25 years) participated, divided into three groups, each undergoing a 90-minute cycling session at 75% VO₂ max. Participants consumed CHO-PROT, carbohydrate (CHO), or placebo (PLA) drinks 15 minutes before and 45 minutes after exercise. Blood samples were collected before, during, and after exercise. Results: indicated that CHO-PROT and CHO groups exhibited significantly higher blood glucose levels compared to the PLA group (p<0.05), particularly around 75 minutes and 1.5 hours post-exercise. Blood lactate levels did not significantly differ among groups post-exercise. Notably, CHO-PROT consumption led to lower creatine kinase levels compared to CHO and PLA groups (p<0.05), suggesting reduced muscle damage. CHO consumption also demonstrated lower creatine kinase levels compared to the PLA group (p<0.05). Conclusions: CHO-PROT supplementation can elevate blood glucose during post-exercise recovery without influencing blood lactate, highlighting its potential benefits for Pencak Silat athletes.


Carbohydrate-Protein Supplement; Pencak Silat Athletes; Recovery Period

Full Text:



Abreu, R., Oliveira, C. B., Costa, J. A., Brito, J., & Teixeira, V. H. (2023). Effects of dietary supplements on athletic performance in elite soccer players: a systematic review. Journal of the International Society of Sports Nutrition, 20(1).

Alghannam, A. F., Templeman, I., Thomas, J. E., Jedrzejewski, D., Griffiths, S., Lemon, J., Byers, T., Reeves, S., Gonzalez, J. T., Thompson, D., Bilzon, J., Tsintzas, K., & Betts, J. A. (2020). Effect of carbohydrate–protein supplementation on endurance training adaptations. European Journal of Applied Physiology, 120(10), 2273–2287.

Bennett, C. J., Henry, R., Snipe, R. M. J., & Costa, R. J. S. (2020). Is the gut microbiota bacterial abundance and composition associated with intestinal epithelial injury, systemic inflammatory profile, and gastrointestinal symptoms in response to exertional-heat stress? Journal of Science and Medicine in Sport, 23(12), 1141–1153.

Churchward-Venne, T. A., Pinckaers, P. J. M., Smeets, J. S. J., Betz, M. W., Senden, J. M., Goessens, J. P. B., Gijsen, A. P., Rollo, I., Verdijk, L. B., & van Loon, L. J. C. (2020). Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. The American Journal of Clinical Nutrition, 112(2), 303–317.

Dahl, M. A., Areta, J. L., Jeppesen, P. B., Birk, J. B., Johansen, E. I., Ingemann-Hansen, T., Hansen, M., Skålhegg, B. S., Ivy, J. L., Wojtaszewski, J. F. P., Overgaard, K., & Jensen, J. (2020). Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. Journal of Applied Physiology, 129(2), 297–310.

Forbes, S. C., Candow, D. G., Smith-Ryan, A. E., Hirsch, K. R., Roberts, M. D., VanDusseldorp, T. A., Stratton, M. T., Kaviani, M., & Little, J. P. (2020). Supplements and Nutritional Interventions to Augment High-Intensity Interval Training Physiological and Performance Adaptations—A Narrative Review. Nutrients, 12(2), 390.

Goldstein, E., Stout, J., Starling-Smith, T., & Fukuda, D. (2022). Carbohydrate-Protein Coingestion Enhances Cycling Performance with Minimal Recovery Time between Bouts of Exhaustive Intermittent Exercise. Journal of Exercise and Nutrition, 5(2).

Hansen, M., Oxfeldt, M., Larsen, A. E., Thomsen, L. S., Rokkedal-Lausch, T., Christensen, B., Rittig, N., De Paoli, F. V., Bangsbo, J., Ørtenblad, N., & Madsen, K. (2020). Supplement with whey protein hydrolysate in contrast to carbohydrate supports mitochondrial adaptations in trained runners. Journal of the International Society of Sports Nutrition, 17(1).

Karp, J. R., Johnston, J. D., Tecklenburg, S., Mickleborough, T. D., Fly, A. D., & Stager, J. M. (2006). Chocolate milk as a post-exercise recovery aid. International Journal of Sport Nutrition and Exercise Metabolism, 16(1), 78–91.

Kloby Nielsen, L. L., Tandrup Lambert, M. N., & Jeppesen, P. B. (2020). The Effect of Ingesting Carbohydrate and Proteins on Athletic Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 12(5), 1483.

Kontro, H., Kozior, M., Whelehan, G., Amigo-Benavent, M., Norton, C., Carson, B. P., & Jakeman, P. (2021). Carbohydrate and protein co-ingestion postexercise does not improve next-day performance in trained cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 31(6), 466–474.

Larsen, M. S., Clausen, D., Jørgensen, A. A., Mikkelsen, U. R., & Hansen, M. (2019). Presleep Protein Supplementation Does Not Improve Recovery During Consecutive Days of Intense Endurance Training: A Randomized Controlled Trial. International Journal of Sport Nutrition and Exercise Metabolism, 29(4), 426–434.

Liang, Y., Chen, Y., Yang, F., Jensen, J., Gao, R., Yi, L., & Qiu, J. (2022). Effects of carbohydrate and protein supplement strategies on endurance capacity and muscle damage of endurance runners: A double blind, controlled crossover trial. Journal of the International Society of Sports Nutrition, 19(1), 623–637.

Margolis, L. E. E. M., Allen, J. T., Hatch-Mcchesney, A., & Pasiakos, S. M. (2021). Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-analysis. Medicine and Science in Sports and Exercise, 53(2), 384–393.

Mertz, K. H., Reitelseder, S., Bechshoeft, R., Bulow, J., Højfeldt, G., Jensen, M., Schacht, S. R., Lind, M. V., Rasmussen, M. A., Mikkelsen, U. R., Tetens, I., Engelsen, S. B., Nielsen, D. S., Jespersen, A. P., & Holm, L. (2021). The effect of daily protein supplementation, with or without resistance training for 1 year, on muscle size, strength, and function in healthy older adults: A randomized controlled trial. The American Journal of Clinical Nutrition, 113(4), 790–800.

Moreno-Pérez, D., López-Samanes, Á., Larrosa, M., Larumbe-Zabala, E., Centeno, A., Roberts, J., & Naclerio, F. (2023). Effects of protein–carbohydrate vs. carbohydrate alone supplementation on immune inflammation markers in endurance athletes: a randomized controlled trial. European Journal of Applied Physiology, 123(7), 1495–1505.

Naclerio, F., Larumbe-Zabala, E., Seijo, M., Ashrafi, N., Nielsen, B. V., & Earnest, C. P. (2019). Effects of Protein Versus Carbohydrate Supplementation on Markers of Immune Response in Master Triathletes: A Randomized Controlled Trial. Journal of the American College of Nutrition, 38(5), 395–404.

Namma-Motonaga, K., Kondo, E., Osawa, T., Shiose, K., Kamei, A., Taguchi, M., & Takahashi, H. (2022). Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes. Nutrients, 14(7).

Nhung, L., & Khanh, S. (2023). The Impact of Nutrient Timing on Athletic Performance : A case of Hanoi Athletes in Vietnam. Journal of Food Science and Human Nutrition, 2(1), 1–9.

Olsen, T., Sollie, O., Nurk, E., Turner, C., Jernerén, F., Ivy, J. L., Vinknes, K. J., Clauss, M., Refsum, H., & Jensen, J. (2020). Exhaustive Exercise and Post-exercise Protein Plus Carbohydrate Supplementation Affect Plasma and Urine Concentrations of Sulfur Amino Acids, the Ratio of Methionine to Homocysteine and Glutathione in Elite Male Cyclists. Frontiers in Physiology, 11.

Oosthuyse, T., Bosch, A. N., Kariem, N., & Millen, A. M. E. (2021). Mountain Bike Racing Stimulates Osteogenic Bone Signaling and Ingesting Carbohydrate-Protein Compared with Carbohydrate-Only Prevents Acute Recovery Bone Resorption Dominance. Journal of Strength and Conditioning Research, 35(2), 292–299.

Pearson, A. G., Hind, K., & Macnaughton, L. S. (2023). The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: A systematic review with meta-analysis. European Journal of Clinical Nutrition, 77(8), 767–783.

Ruan, D., Deng, H., & Xu, X. (2021). Carbohydrate and Protein Supplements, an Effective Means for Maintaining Exercise-Induced Glucose Metabolism Homeostasis. Journal of Biomaterials and Tissue Engineering, 11(6), 1120–1128.

Russo, I., Della Gatta, P. A., Garnham, A., Porter, J., Burke, L. M., & Costa, R. J. S. (2021). Assessing Overall Exercise Recovery Processes Using Carbohydrate and Carbohydrate-Protein Containing Recovery Beverages. Frontiers in Physiology, 12.

Sollie, O., Clauss, M., Jeppesen, P. B., Tangen, D. S., Johansen, E. I., Skålhegg, B. S., Ivy, J. L., & Jensen, J. (2023). Similar performance after intake of carbohydrate plus whey protein and carbohydrate only in the early phase after non-exhaustive cycling. Scandinavian Journal of Medicine and Science in Sports, 33(7), 1091–1103.

Suwirman, S., Sepriadi, S., Ihsan, N., & Deswandi, D. (2021). Instrument Speed Endurance Test of Pencak Silat Athletes. International Journal of Human Movement and Sports Sciences, 9(6), 1447–1452.

Suzuki, K., Tominaga, T., Ruhee, R. T., & Ma, S. (2020). Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants, 9(5), 401.

Ten Haaf, D. S. M., Flipsen, M. A., Horstman, A. M. H., Timmerman, H., Steegers, M. A. H., de Groot, L. C. P. G. M., Eijsvogels, T. M. H., & Hopman, M. T. E. (2021). The effect of protein supplementation versus carbohydrate supplementation on muscle damage markers and soreness following a 15-km road race: a double-blind randomized controlled trial. Nutrients, 13(3), 1–16.

Viribay, A., Arribalzaga, S., Mielgo-Ayuso, J., Castañeda-Babarro, A., Seco-Calvo, J., & Urdampilleta, A. (2020). Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners. Nutrients, 12(5), 1367.

Wych, J., Grayling, M. J., & Mander, A. P. (2019). Sample size re-estimation in crossover trials: application to the AIM HY-INFORM study. Trials, 20(1), 665.

Xu, J., Li, T., Xia, X., Fu, C., Wang, X., & Zhao, Y. (2020). Dietary Ginsenoside T19 Supplementation Regulates Glucose and Lipid Metabolism via AMPK and PI3K Pathways and Its Effect on Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 68(49), 14452–14462.



  • There are currently no refbacks.

Copyright (c) 2023 Preeyapat Boonhan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.




Kantor Program Studi Pendidikan Jasmani
Jl. Pattimura III/20 Jombang
Homepage :

View Jurnal Bravo's Stats